Analysing hazards: a tool for quality management

Dr Bénédicte GOURIEUX, Pharmacy-Sterilization department University Hospital of Strasbourg, France

Sterilization activity

- University Hospital of Strasbourg
 - **2600** beds
 - 45 theatres
 - 70 dental seats

- Sterilization activity
 - 60 operators
 - 3 supervisors
 - responsability : pharmacist (~ consultant)

Nouvel Hôpital Civi

Since 1995

- development of quality management
 - quality policy
 - sterilization education and training
 - quality education
 - definition of person in charge of quality management
- building of a specific quality system for sterilization activity

Quality system

2000 : a new department

- a modern architecture for our CSSD
 - new areas
 - new organisation
- difficulty for the operators to be enough involved in quality assurance
- development of analysing hazards adapted to sterilization process

H.A.C.C.P. method

the process of collecting and evaluating information on hazards associated with sterilization process under consideration to decide which are significant

a step at which control can be applied and is essential to prevent or eliminate a sterilization hazard or reduce it to an acceptable value

Definitions

hazard

an event that may impair, in absence of its control, quality of medical devices or sterilization process and induce a negative effect for health.

critical point

 any step at which biological, chemical or physical factors can be controlled

objective of sterilization process

- microbiological and functional safety for medical devices
- with an effective logistic

Developping a HACCP plan

- conduct a hazard analysis
- 2 determine critical control points
- **3** → establish critical limits for each point
- 4 establish monitoring procedures
- 5 establish corrective actions

Preliminary tasks

- determine HACCP team : a work group with all professionnals of sterilization
- conduct a specific training
- describe the aim of the study
 - steam sterilization (134°C, 18 min)
 - identification of microbiological and functional hazards
- describe the sterilization process

Conduct a hazard analysis

- develop a flow diagram which describes the process
- for each stage
- type of hazard
 - microbiological
 - functional
- method
 - brain storming session
 - collection of non confirming products and complaints of customers
 - Ishikawa method

microbiological hazards for cleaning

Potential hazard	Cause 1	Cause 2	Cause 3	Preventive measures	
S	Loading of basket which decreases cleaning efficacy	Many instruments in each basket Medical device with lumen	Bad knowledge of medical devices	Training Cleaning procedure Data records of each medical devices	
M	Medical devices which are waiting a long time before cleaning	No cleaning during the night		Pre-cleaning of medical devices with a mecanical action Specific tray	
R	Water during packaging	Bad drying	Problem with washer disinfector	Verification of each medical device before packaging Training Cleaning procedure	

S = survey, M= multiplication, R = recontamination (MD=medical device)

functional hazards for cleaning or transportation

Potential hazard	Cause 1	Cause 2	Cause 3	Preventive measures
D F	Corrosion of medical devices	Quality of water in washer disinfector	No specifications	Chemical quality of final rinse water Periodic control of water
L B D F	Loading of the baskets during transportation	Bad training No sufficient time No adapted trolley		Education and training Organisation New trolleys

L = loss , B = breakage , D= damaged medical device, F = damaged function

Identification of CCP

CCP decision tree

- a sequence of questions to assist in determining whether a control point is a CCP
- example : sealing during packaging stage

Identification of critical points

- Critical Control Points
 - transport
 - sealing
 - loading medical devices before sterilization
 - sterilization
 - ...
- specific monitoring for each CCP
 - 2 types
 - automatic
 - manual

For each Critical Control Points

Establish

- critical limit of each CCP
- frequency of control
- responsabilities
- control records

Examples

C	СР	Critical limits	Monitoring	Records	Responsability
ph	erilization nase during cle	Temperature 134°C [-0°C; +3°C]	Each cycle	Diagram with temperature and pressure	Operator
	tegrity of ealing	0	After each packaging Monthly	Packaging traceability Specific HACCP	Operator Superviser
			, ,	document	Super viser

H.A.C.C.P VERIFICAT CCP : SEA	LING	<u> </u>	LIZATION	
Name :	Function :			
1- Temperature of sealing = 180°C		□ yes	□ no	
Sample of 10 sealed pouches:				
 2- Number of pouches with no secure seal : 3- Number of pouches with no linear seal : 4- Number of pouches with bad seal (crease) : Notes : 				
Control of critical point :		□ yes	□ no	
Corrective actions Delay to be effective: Responsabilities:		<i>□</i> ,00		
Pharmacist :	Direct superviser :			

Assessment of this study

- methodical analysis
- increase of prevention system
- development of monitoring
 - specific document (HACCP verification schedule)
 - traceability of each control
 - identification of non conform products

Positive points

- collective involvment of the staff
 - increase relation with our customers
 - theatre
 - maintenance staff
 - ...
 - increase dynamic quality system

Specific attention

- grade hazards and their specific preventive measures
 - criticity index = severity x detectability x frequency
- a long time to develop this study
- importance of communication with the team

Improvment of quality management

- level 1
 no quality system
 - education and training of operators, quality policy, quality manual, procedures documents
- Ievel 2 operational quality system
 - analysis of repetitive problems, development of corrective actions
 - **level 3** operational quality system, corrective actions
 - hazard analysis and critical control points
 - development of preventive actions
- level 4 ▼ efficient quality system with preventive actions
 - development of valuation
 - internal quality audit

