

Environmental Monitoring

Mark Hichens MSc CBiol MSB

Decontamination Units

- Decontamination facilities are designed, constructed, maintained and controlled to provide a controlled environment that minimises adventitious contamination of clean and disinfected reusable invasive medical devices (RIMD)
- Where does this adventitious contamination come from and how is it assessed?

Routes of microbial contamination

• Indirect Transmission

Transfer of a microorganism from person to person via an inanimate object. Eg. Improperly cleaned instruments/endoscopes, equipment or environment

• Direct Contact Transmission Hand to hand

Personnel

- Normal human body flora
- Assumption is that the occupants are contaminated and will shed skin cells, hair, bacteria.
- "Microbial plume"
- The type and rate at which bacteria are shed will be dependent on the individual.
- Personal hygiene /health

• Water Transmission

Contaminated supply or purified waters, bio-film formation

Droplet and air transmission

Droplets of water (aerosolised) of less than 5µm or dust particles can remain airborne for long periods of time and travel long distances

Airborne contamination – ventilation

Filtration

Ill fitting filters Compromised filters Clogged Filters

Ductwork

Dirt Corrosion condensation

Plant

Operating below specification i) pressures ii) air changes

Badly Maintained

Pathogens and diseases that have the potential to be transmitted via the airborne route Pathogen

Aspergillosis	Inhalation of airborne conidia (spores)	Meningitis	Respiratory droplets from nose and throat	
Blastomycosis	Conidia, inhaled in spore-laden dust	(Haemophilus influenzae)		
Chickenpox/shingles	Droplet or airborne vesicle fluid or respiratory tract secretio	Meningitis	Respiratory droplets from nose and throat	
Adenovirus	Transmitted through respiratory droplets	(Streptococcus pneumoniae)		
Cryptococcosis	Presumably by inhalation	Mumps	Airborne transmission or droplet spread	
Human parvovirus	Contact with infected respiratory secretions	Nocardia	Acquired through inhalation	
Rotavirus	Possible respiratory spread	Whooping cough (Bordetella pertussis)		
Norwalk virus	Airborne transmission from fomites	Plague (Yersinia pestis)	Rarely airborne droplets from human patients. In the case of	
Histoplasmosis	Inhalation of airborne conidia		deliberate use, plague bacilli would possibly be transmitted as an aerosol	
Influenza	Airborne spread predominates	Pneumonia (S. pneumoniae)	Droplet spread	
Lassa virus	Aerosol contact with excreta of infected rodents	Staphylococcal diseases	Airborne spread	
Legionellosis	Epidemiological evidence supports airborne transmission	Streptococcal diseases	Large respiratory droplets. Individuals with acute upper respiratory	
Measles	Airborne by droplet spread		tract (especially nasal) infections are particularly likely to transmit infection	
Meningitis	Respiratory droplets from nose and throat			
(Neisseria meningitidis)				

Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premisesJ.W. Tang et al. Journal of Hospital Infection (2006) 64, 100e114Cúram Medical, Dublin, Irel

 "Taken collectively, this degree of challenge to sterilization and disinfection systems is extraordinarily excessive".

- It is critical to provide evidence that control systems, individually and in combination, are effective in maintaining the environment, thus ensuring the decontamination status of the RIMD/flexible scope has not been compromised.
- Control systems including
- PPE
- Cleaning protocols
- Infrastructure
- Ventilation

 To best ensure the welfare and safety of personnel working within that environment

Health Service Executive Recommended Practices For Central Decontamination Units

Note the Week-depose and white decrease is O Down Openist. Some Dijestment of Health, Dated Region.

Air monitoring methods

1. Passive settling of microbes using 90mm diameter 'settle' plates which contain either Tryptone Soya Agar (TSA) or Sabaroud Dextrose Agar (SDA).

Active Air (impaction) sampling

Surfaces - Contact (Rodac) plates

Plates - 55mm dia. Area ~ 25cm²

TSA and SBA

Disinfectant neutraliser

Ideal for flat surfaces

Surface - Swab sampling

• Swab sampling for irregular surfaces and difficult to get to places

Monitoring Programme

- A monitoring plan (locations) of the sampling sites will typically include
 - Close to where RIMDs are handled and stored
 - Air inflows
 - Areas of high activity
 - Problem areas
- At Rest
- In operation

Settle Plate	Position			
S1	Trolley in front of Western Steriliser			
S2	Back wall PC station (next to cleaner store)			
S3	Back wall, Middle, infront of printer			
S4	Back Wall, right hand side of preparation bench			
S5	Front wall, preparation bench closest to entry door			
S6	Trolley middle shelf directly oppisite entry door			
S7	Middle of cleanside on tolley			
S8	Front wall, preparation bench top shelf			

Contact Plate	Position			
CA	Central Autoclave , Control panel			
СВ	Back wall PC station (next to cleaner store), Lower shelf			
CC	Back wall, Middle, Printer side			
CD	Middle WD, Control Panel			
CE	Right WD panel			
CF	Entry door, push panel			
CG	Front wall, preparation bench top shelf			
СН	Trolley, center Cleanside			

Frequency of monitoring

- Settle plates monthly
- Contact plates weekly
- Active air sampling monthly (if used)
- Breakdown, maintenance or change in practices

Microbiological analysis

- "The absolute CFU value has limited scientific meaning"
- Single microbiological result to many variables!

• True value - repeated analysis and trending

Control Limits

- The limit values should be based on averaged values achieved over at least a six month period.
- This will be unique for each decontamination unit
- Typical action limits for Class 8 facilities

	Contact plate CFU/plate	Settle plate CFU/plate
Class 8 Alert	5	5
Class 8 Action	30 (floor counts)	20
Class 7 Alert	4	3
Class 7 Action	5 (10 floor) (20 floor, dirty side)	5

Action and alert Limits

 Alert level – CFU levels that, when exceeded, signal a possible deviation from normal operating conditions and may not require action, but may need to be monitored more closely.

 Action level – CFU levels that, that when exceeded, indicate a deviation from normal operating conditions and require immediate action.

		Sample Point/Total Viable Count							
Date	Control	S1	52	S 3	S4	S5	S6	57	
05.06.14	0	25	27	29	33	28	22	20	U
12.07.14	0	26	35	28	26	30	20	13	U
19.08.14	0	21	10	9	10	5	3	4	U
26.09.14	0	17	5	19	27	7	2	9	U
26.10.14	0	20	8	22	27	7	2	11	U
02.11.14	0	14	18	20	16	24	13	21	U
10.12.14	0	5	8	6	6	12	2	27	U
17.01.15	0	4	5	5	3	4	8	2	U
24.02.15	0	12	7	10	7	8	6	10	U
31.03.15	0	13	11	11	8	6	10	9	U
07.04.15	0	14	5	9	13	10	5	14	U
17.05.15	0	26	34	26	30	6	22	16	U
24.06.15	0	10	11	27	13	1	7	11	U
25.07.15	0	57	51	44	35	36	30	52	U
08.08.15	0	84	60	71	67	32	18	70	U
16.09.15	0	2	3	4	2	0	0	5	U
23.10.15	0	8	4	7	5	0	0	0	U
02.11.15	0	4	1	7	5	3	2	1	U
	Average (x)	20.1	16.8	19.7	18.5	12.2	9.6	16.4	
	No. (N)	18	18	18	18	18	18	18	
	SD	7.1	10.5	8.6	9.9	9.2	7.3	6.6	
	Alert Limit	34.3	37.8	36.9	38.4	30.5	24.1	29.6	
	Action Limit	41.4	48.2	45.5	48.3	39.7	31.4	36.2	

Trend analysis

Investigation and corrective actions

- Multi-disciplinary approach Include the laboratory and microbiologist
- Unusual activity, maintenance, suspected contamination, abuse
- System breakdowns
- Change in staff
- Change in policies